Anova

En estadística, análisis de varianza (ANOVA, según terminología inglesa) es una colección de modelos estadísticos y sus procedimientos asociados. El análisis de varianza sirve para comparar si los valores de un conjunto de datos numéricos son significativamente distintos a los valores de otro o más conjuntos de datos. El procedimiento para comparar estos valores está basado en la varianza global observada en los grupos de datos numéricos a comparar. Típicamente, el análisis de varianza se utiliza para asociar una probabilidad a la conclusión de que la media de un grupo de puntuaciones es distinta de la media de otro grupo de puntuaciones.

El ANOVA parte de algunos supuestos que han de cumplirse:

Existen tres tipos de modelos:

  • El modelo de efectos fijos asume que el experimentador ha considerado para el factor todos los posibles valores que éste puede tomar. Ejemplo: Si el género del individuo es un factor, y el experimentador ha incluido tanto individuos masculinos como femeninos, el género es un factor fijo en el experimento.
  • Los modelos de efectos aleatorios asumen que en un factor se ha considerado tan sólo una muestra de los posibles valores que éste puede tomar. Ejemplo: Si el método de enseñanza es analizado como un factor que puede influir sobre el nivel de aprendizaje y se ha considerado en el experimento sólo tres de los muchos más métodos posibles, el método de enseñanza es un factor aleatorio en el experimento.
  • Los modelos mixtos describen situaciones donde están presentes ambos tipos de factores: fijos y aleatorios.

La técnica fundamental consiste en la separación de la suma de cuadrados (SS, ‘sum of squares’) en componentes relativos a los factores contemplados en el modelo. Como ejemplo, mostramos el modelo para un ANOVA simplificado con un tipo de factores en diferentes niveles. (Si los niveles son cuantitativos y los efectos son lineales, puede resultar apropiado un análisis de regresión lineal)

Modelo de efectos fijos

El modelo de efectos fijos de análisis de la varianza se aplica a situaciones en las que el experimentador ha sometido al grupo o material analizado a varios factores, cada uno de los cuales le afecta sólo a la media, permaneciendo la “variable respuesta” con una distribución normal.

Modelo de efectos aleatorios

Los modelos de efectos aleatorios se usan para describir situaciones en que ocurren diferencias incomparables en el material o grupo experimental. El ejemplo más simple es el de estimar la media desconocida de una población compuesta de individuos diferentes y en el que esas diferencias se mezclan con los errores del instrumento de medición.

Grados de libertad

Por grados de libertad “degrees of freedom” entendemos el número efectivo de observaciones que contribuyen a la suma de cuadrados en un ANOVA, es decir, el número total de observaciones menos el número de datos que sean combinación lineal de otros.

Pruebas de significación

El análisis de varianza lleva a la realización de pruebas de significación estadística, usando la denominada distribución F de Snedecor.

Anuncios

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s


A %d blogueros les gusta esto: